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Abstract. The dynamics of laser-assisted elastic collisions in helium is studied using the second-order Born
approximation. Detailed calculations of the scattering amplitudes are performed by using the Sturmian
basis expansion. Differential cross sections for elastic scattering with the net absorption/emission of up to
two photons are calculated for collision energies of 5 eV, 10 eV, and 20 eV. We discuss the influence of
the low-energy electrons on the differential cross section (DCS) as a function of the scattering angle for
selected choices of the laser frequency and the number of photons exchanged between the external field
and electron-helium system.

PACS. 32.10.-f Properties of atoms – 32.80.-t Photon interactions with atoms – 32.80.Wr Other multi-
photon processes – 32.80.Cy Atomic scattering, cross sections, and form factors; Compton scattering

1 Introduction

The study of atomic systems interacting with intense laser
fields has attracted considerable interest in recent years.
The observation of multiphoton free-free absorption and
emission in elastic electron-atom collisions in the presence
of a CO2 laser [1] represented the first demonstration of
a laser-assisted multiphoton process. With the availability
of lasers it has become possible to make detailed studies of
these differential cross sections, not only for elastic scatter-
ing, but also for inelastic collisions (excitation, ionization,
...). The challenge for theory lies in accurately treating
each of the electron-target, laser-electron and laser-target
interactions. Perturbative treatments may be used if one
of these dominates the others. In an early work on free-
free scattering, for example, Kroll and Watson [2] treated
the laser-electron interaction with higher order terms in
the Born series, while the dressing of the target by the
field was neglected, to obtain a formula that is valid
when the frequency ω of the laser field is much smaller
than the kinetic energy of the incident electron. The ex-
perimental data concerning large-angle scattering are in
reasonable agreement with the Kroll-Watson-type approx-
imations (KWA), which neglect the internal degrees of
freedom of the atom. In KWA, the differential cross sec-
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tion for free-free scattering is expressed as the product of
the field-free differential cross section evaluated at shifted
initial and final electron momenta and a factor that de-
pends on the field and the electron momentum transfer.
The derivation of the KWA breaks down at critical ge-
ometries where the direction of the electric field is per-
pendicular to the momentum transfer, but the differential
cross sections for these geometries are expected to be very
small [2].

Several experiments have been performed, in which the
exchange of one or more photons between the electron-
atom system and the laser field has been observed [3–8].
Moreover, the laser field introduces new parameters into
the description of the collision such as its intensity, its
frequency, and its polarization. At present, almost all the
free-free experiments have been performed with a CO2

laser as the radiation field (�ω = 0.117 eV) using he-
lium and argon as atomic-target. For such cases a number
of experiments have verified qualitatively the predictions
of the KWA at large scattering angles [3]. However, in
early experiments on argon and helium targets, at crit-
ical geometries, where the laser polarization is almost
perpendicular to the momentum transfer, Wallbank and
Holmes [4–6] have measured angular distributions several
orders of magnitude larger than those predicted by KWA.
They suggested that the disagreement could be due to the
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polarization of the target by the field and/or its dressing
effects (the effects of the internal degrees of freedom of the
atom).

The aim of this work is to generalize our previous treat-
ment of the case of a helium target, for which the prospects
of performing experiments are favourable. We will provide
a new analysis of our previous work [9,10] in particular at
low collision energies where most experiments were per-
formed and the results qualitatively agree with KWA.

The paper is structured as follows. In Section 2 we
present the general formation of laser-assisted elastic
electron-atom collisions in the case of linear polarization
at low collision energies. An account is then given of the
techniques we have used to evaluate the scattering am-
plitudes. Section 2 also contains details of our numerical
results as well as their physical interpretation and inter-
est. Unless otherwise stated atomic units (au) are used
throughout.

2 Theory, results and discussion

Following our previous work [9,10], we consider a classical
monochromatic and single-mode laser field that is spa-
tially homogeneous. This means that it varies little over
the atomic range and that the dipole approximation is
valid. Working in the Coulomb gauge, we have for the
vector potential of a field propagating along the ẑ-axis
and represented in the collision plane (x̂ − ŷ)

A(t) = A0

[
x̂ cos(ωt+ ϕ) + ŷ sin(ωt+ ϕ) tan

(η
2

)]
, (1)

with the corresponding electric field

E(t) = E0

[
x̂ sin(ωt+ ϕ) − ŷ cos(ωt+ ϕ) tan

(η
2

)]
, (2)

where E0 = ωA0/c, E0 and ω are the peak electric field
strength and the laser angular frequency, respectively.
Here η measures the degree of ellipticity of the field and
the particular cases of linear polarization (η = 0) and cir-
cular polarization (η = π/2) are easily recovered. Here ϕ
denotes the initial phase of the laser field. We can rewrite
the electric laser field in terms of its spherical compo-
nents by

E(t) = E0

∑
ν=±1

iνε̂ν exp(−iν(ωt+ ϕ)), (3)

where ε̂ν = [x̂+ iνŷ tan(η/2)]/2 is the polarization vector.
The process in which � photons from the laser are ex-

changed, during the electron-helium elastic collision, can
be described by the following equation

e−(k0, Ek0) + He(11S) + ��ω −→ He(11S) + e−(kf , Ekf
),

(4)
where k0 and kf are respectively the momentum of the in-
cident and scattered electrons in the presence of the laser
field. Ek0 = k2

0/2 and Ekf
= k2

f/2 are the initial and
final projectile kinetic energies. The helium target is ini-
tially in the ground state 11S. The integer � is the number

of photons transferred between the electron-target system
and the laser field, where positive values of � correspond
to the absorption of photons by the system and negative
ones to the stimulated emission photons.

The interaction between the projectile and the laser
field is treated exactly and its solution is given by the
non-relativistic Volkov wave function [9–11]

χk(r0, t) = (2π)−3/2 exp{i(k ·r0−Ekt−Rk sin(ωt−γk))},
(5)

where r0 represents the free electron coordinate, k de-
notes the electron wavevector and Ek = k2/2 is the ki-
netic energy; one also has tan(γk) = (k · ŷ/k · x̂) tan(η/2),
Rk = α0

[
(k · x̂)2 + (k · ŷ)2 tan2(η/2)

]1/2. α0 = E0/ω
2

represents the oscillation amplitude of a classical elec-
tron in a laser field. Since we are interested in fields
which have electric strengths smaller than the atomic unit
(E0 � 5 × 109 Vcm−1) and frequencies different from the
atomic transition energies, perturbation theory is an ap-
propriate method to solve the laser-target interaction pro-
cess. If one restricts oneself to the first order, the dressed
wavefunctions of the atom are well-known (see [11]) and
are given by

φn(X, t) = e−iA·Re−iEnt

[
ψn(X)

+
i

2

∑
n′

(
M−

n′ne
iωt

ωn′n + ω
− M+

n′ne
−iωt

ωn′n − ω

)
ψn′(X)

]
,

(6)

where X denotes the ensemble of the target electrons’
coordinates (r1, r2), ψn(X) is the target state of energy
En in the absence of the laser field, ωn′n = En′ − En is
the Bohr frequency and M±

n′n = E0〈ψn′ |ε̂± · R|ψn〉 is the
dipole coupling matrix elements with R = r1 + r2.

In equation (6) the summation includes an integra-
tion over the continuum states. The factor e−iA·R ensures
gauge consistency between the Volkov free wave func-
tions (5) and the dressed target wave function (6). The
wave function (6) is valid for all frequencies ω except, of
course, in the vicinity of a Bohr frequency ωn′n.

Remembering that if we consider collision kinematics,
where the incident electron is fast and exchange effects are
small, we shall, as a first approximation, carry out a first-
Born treatment of the scattering process. The S-matrix
elements for elastic scattering, in the direct channel, in
the presence of the laser field and in the first-Born ap-
proximation is given in atomic units by [9–11]

SB1
el = −i

×
∫ +∞

−∞
dt〈χkf

(r0, t)φ0(X, t)|Vd(r0,X)|χk0(r0, t)φ0(X, t)〉
(7)

where

Vd(r0,X) = − 2
r0

+
2∑

j=1

1
r0j

(8)
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is the direct electron-atom interaction potential, with
r0j = |r0 − rj |. Here, χk0(r0, t) and χkf

(r0, t) denote, re-
spectively, the Volkov wave functions of the free electron
projectile before and after scattering in the presence of
the laser field and φ0(X, t) is the ‘dressed’ atomic wave
function describing the fundamental and final states. This
type of contribution to different scattering processes has
been previously computed in various instances [9–17]. By
expanding the integrand in a Fourier series and integrating
over t, we can rewrite equation (7) in the form

SB1
el = i(2π)−1

+∞∑
�=−∞

δ(Ekf
− Ek0 − �ω)fB1,�

el (∆), (9)

fB1,�
el (∆) represents the first-Born approximation of the

elastic scattering amplitude associated with the exchange
of � photons and momentum transfer ∆ = k0 − kf . This
can be expressed as

fB1,�
el (∆) = fB1,�

elec (∆) + fB1,�
atom(∆). (10)

The first term on the right-hand side of equation (10),
which we shall call ‘electronic’, describes the scattering
of a Volkov electron by the bare atom. The other term,
called ‘atomic’, occurs as a result of ‘dressing’ effects of
the atomic target. The ‘electronic’ amplitude fB1,�

elec (∆) is
given by

fB1,�
elec (∆) = J�(R∆)fB1

el (∆) (11)

where fB1
el (∆) = −(2/∆2)〈ψ0|Ṽd(∆,X)|ψ0〉 is the field-

free first-Born amplitude for elastic scattering, J� is an
ordinary Bessel function of order �.

For the second term, one has

fB1,�
atom(∆) =

i

2

[
J�+l(R∆)e−iγ∆

∑
n

(
fB1
0n (∆)M−

n0

ωn0 + ω
+
M−

0nf
B1
n0 (∆)

ωn0 − ω

)

− J�−l(R∆)eiγ∆

∑
n

(
fB1
0n (∆)M+

n0

ωn0 − ω
+
M+

0nf
B1
n0 (∆)

ωn0 + ω

)]
,

(12)

where fB1
0n (∆) = −(2/∆2)〈ψ0|Ṽd(∆,X)|ψn〉 and

fB1
n0 (∆) = −(2/∆2)〈ψn|Ṽd(∆,X)|ψ0〉 are the first-

Born amplitudes corresponding to the scattering event
transitions 0 → n and n → 0 in the absence of the laser
field and

Ṽd(∆,X) =
2∑

j=1

exp(i∆ · rj) − 2. (13)

The sums in equation (12) involve only intermediate P
states.

The first-Born differential cross section, which ac-
counts for the ‘dressing’ effects due to the dipole distortion
of the target atom by the laser field, for elastic scattering
with the transfer of � photons is given by

(
dσB1,�

el

dΩ

)
=
kf

k0
|fB1,�

el (∆)|2. (14)

In contrast to the case of atomic hydrogen [14], an exact
evaluation of the expression in equation (12) is not pos-
sible, since no general accurate wavefunctions are known
for all excited states of helium. Here, we have used the
following set of approximations. For the ground state we
have used the wavefunction [15]:

ψ11S(r1, r2) = ϕ0(r1)ϕ0(r2) (15)

where the orbital ϕ0(r) for the singlet 11S state is given by

ϕ0(r) =
1√
4π

RHe
0 (r) =

1√
4π

(Ae−αr +Beβr) (16)

with A = 2.60505, B = 2.08144, α = 1.41 and β = 2.61.
In the case of elastic scattering from the ground state,

we only have to consider n1P intermediate states which
can be represented by expressions of the form [15]

ψn1P(r1, r2) =
1√
2

[
ψ1s(Zi, r1)ψn1P(Z0, r2)

+ ψ1s(Zi, r2)ψn1P(Z0, r1)
]

(17)

where ψ1s and ψn1P are hydrogenic wavefunctions cor-
responding to 1s and n1P states with effective charges
Zi = 2 and Z0 = 1, respectively, and the index n can
take both discrete and continuous values. Doubly excited
states are not taken into account by this method but their
contribution is known to be small [16].

A similar analysis of the elastic electron-atom scat-
tering in the presence of a laser field can be made for
the higher-order terms of the Born series. As an example,
the second-order contribution to the S-matrix element for
electron-atom collisions from the ground state to a final
state of energy E0, in the direct channel and in the pres-
ence of a laser field accompanied by the transfer of � pho-
tons can be given by

SB2
el = −i

∫ +∞

−∞
dt

×
∫ +∞

−∞
dt′〈χk0(r0, t)φ0(r, t)|Vd(r0, r)G

(+)
0 (r0, r, t; r′0, r′, t′)

× Vd(r′0, r′)|χk0(r
′
0, t

′)φ0(r′, t′)〉, (18)

where G(+)
0 is the causal propagator. It should be noted

that this term as it stands, is second-order in the electron-
atom interaction potential Vd and contains atomic wave
functions corrected to first-order in the laser field strength
E0. If one retains a global first-order correction in E0 for
the target “dressed” states, one finds that SB2

el is the sum
of two terms which are respectively of zero and first-order
in E0 [10].

The study of second-order corrections to atomic S–P
amplitudes shows that these corrections tend to a con-
stant value of order k−1

0 as ∆ becomes small at small
scattering angles and thus are rather unimportant in this
angular range. However, this is precisely the angular scat-
tering region in which we are interested for E0 � 1 au,
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because the first-order amplitude is adequate to provide
significant dressing effects. These effects supply a contri-
bution of the order of ∆−1 and thus govern the differ-
ential cross section, while at larger scattering angles the
target dressing becomes less important, and under non-
resonant conditions one also can model the atom by a
structuresless centre of force. Therefore, in the following,
we shall neglect the second-order contribution to the S-
matrix element for laser-assisted collisions calculated in
first-order in E0. When this approximation is adopted, we
may concentrate our discussion on the computation of the
dominant term, SB2,0

el , which describes the collision of a
Volkov electron with the undressed atom. It reduces, after
a straightforward time integration, to

SB2,0
el = − i

2π3

�=+∞∑
�=−∞

δ(Ekf
− Ek0 − �ω)

×
�′=+∞∑

�′=0

∑
n

∫
dq
J�−�′(∆0 · α0)J�′(∆0 · α0)

∆4
0

×〈ψ0|Ṽd(∆0, r)|ψn〉〈ψn|Ṽd(∆0, r)|ψ0〉
Eq − Ek0 + ωn,0 − �′ω ± iε

,

(19)
with Ṽd(∆0, r) = exp(i∆0 · r) − 1 and ∆0 = k0 − q.
The sum over n runs over the complete set of hydrogenic
states and one has to integrate over the virtual projectile
states χq(r0, t) which represent the wavevector of the free
electron at the time of the collision.

Thus, it turns out that the lowest-order component
SB2,0

el evaluated at the shifted momenta ∆0 and using the
soft-photon approximation, see for instance reference [13],
can be expressed in terms of a simpler second-Born am-
plitude, as

SB2,0
el = −(2π)−1i

�=+∞∑
�=−∞

δ(Ekf
− Ek0 − �ω)fB2,�,0

el (∆),

(20)
with

fB2,�,0
el (∆) = −J�(R∆)

π2

∫ +∞

0

q2dqdΩq

× 〈ψ0|Ṽd(∆0, r)Gc(Ω)Ṽd(∆0, r)|ψ0〉
∆4

0

(21)

and the electron-atom interaction amplitude with the
transfer of � photons may be written, in the second-Born
approximation, as

f �
el(∆) = fB1,�

el (∆) + fB2,�,0
el (∆), (22)

where the first-order term fB1,�
el (∆) is given by equation

(10) and Gc(Ω) =
∑

n

|ψn〉〈ψn|/(Ω − En) is the Coulomb

Green’s function with argument Ω = Ek0 −Eq + �ω+E0.
In Equation (22) and according to the expansion (21),

we may write the second-order fB2,�,0
el (∆) in the form

fB2,�,0
el (∆) = J�(R∆)fB2

el (∆) (23)

with

fB2
el (∆) = − 1

π2

∫ +∞

0

q2dqdΩq

× 〈ψ0|Ṽd(∆0, r)Gc(Ω)Ṽd(∆0, r)|ψ0〉
∆4

0

(24)

which is the field-free second-Born elastic amplitude eval-
uated at the shifted momenta ∆0.

The first and second-Born elastic amplitudes corre-
sponding, respectively, to the first-order and second-order
contribution to the S-matrix element for the laser-assisted
elastic scattering process, have been computed exactly
without further approximation with the help of a Stur-
mian approach, similar to the one described in refer-
ences [10,14]. This constitutes an important advantage in
the present context as compared to earlier computations
relying on the closure approximation [14,15].

The main problem in evaluating the scattering am-
plitudes corresponding to the first and the second-order
contributions to the S-matrix element for laser-assisted
elastic scattering, consists of

(i) performing the summation over the intermediate
states. In order to calculate exactly the correspond-
ing radial amplitudes without further approximation,
we have used two different techniques based on the
Sturmian approach similar to the ones described in
our previous work [11,16,21]. This approach allows
us to take into account exactly the bound-continuum-
state contributions, which are of crucial importance
for electron impact scattering at intermediate ener-
gies. These methods of computation constitute an im-
portant advantage in the present context as compared
to earlier ones relying on the closure approximation
[15,20];

(ii) the presence of the intermediate wavevector q in the
argument of the Bessel function. Indeed, the integral,
(in expression (24)), over the virtual projectile states
χq(r0, t) with wave vector q is prohibitively difficult
to calculate. It is actually zero at some values of the
incident electron energies and accordingly for some
values of the scattered electron energies. Each of these
possible intermediate transitions will be characterized
by a resonance behaviour, i.e. the denominator of the
matrix elements entering the exact formula (Eq. (24))
is close to zero. We shall overcome this difficulty by
determining the exact upper boundary of the inte-
gral (24) over the virtual projectile [9].

In elementary atomic processes identical particles are ex-
pected on physical grounds to respond differently to a
strong external driving field, the effects due to the par-
ticles identity (exchange effects) must become less sig-
nificant. Basically, the different response to the external
perturbation to some extent makes the particles distin-
guishable. It is well-known from field-free electron atom
collision theory that exchange effects lose their impor-
tance when the velocity of the incoming electron is con-
siderably larger than that of the atomic electrons. In this
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case, two identical particles are in quite different physi-
cal states. However, in electron-atom collisions, where free
and bound electrons are present, a strong driving field
should affect in a different way the dynamics of the vari-
ous electrons, and thus a reduction of exchange scattering
amplitude should take place.

The contribution for laser-assisted elastic collisions to
the S-matrix of exchange scattering leads to some con-
ceptual difficulties but would not significantly alter the
results of the present discussion. We have considered in the
present paper only the leading term of gB1,�

el , the exchange
amplitude for electron-atom collisions with the transfer
of � photons used in reference [18]. It is known [9,10,18]
that the exchange effects in collisions are important at low
relative velocities, while the FBA is an essentially high-
energy approximation. Thus, the second-Born differential
cross section corresponding to the elastic scattering pro-
cess, with the transfer of � photons, is given by

(dσ�
el

dΩ

)
=
kf

k0
|f �

el − gB1,�
el |2, (25)

which does not depend on the initial phase ϕ of the laser
field due to the inability of the collision time to be defined
and as a result of the approximation of the projectile wave
packet by a mono energetic beam of infinite duration [19].

The present semiperturbative method with the Stur-
mian basis expansion takes into account the target atom
distortion induced by the presence of a laser field. The
validity of our treatment is based on the fact that the
laser-helium target interaction is non resonant. This con-
dition is more stringent if the laser frequency is compa-
rable to any characteristic atom transition frequency. We
note that the elastic scattering process can be considered
as non resonant if for a given frequency, the intensity does
not exceed a certain limit [15]. Such a condition will be
respected by our choice of the Nd-YAG laser frequency
ω = 1.17 eV and E0 = 2 × 107 Vcm−1.

We are interested in demonstrating the effects of the
incident electron energies in the elastic collision in the
presence of a laser field. In helium, there have been com-
paratively fewer attempts to address the role of the dress-
ing of the atomic states by the strong laser field as the
computation is much more complex. This is unfortunate
since helium would lend itself more easily than hydrogen
to experimental verification. Note however that, though
simplified, the model contains all the ingredients needed
for the discussion of the physics of such processes. Our
results are interpreted by considering the first and second
Born differential cross sections, for a fixed electric field
strength and a fixed laser photon energy. We have ex-
amined our treatment in SBA and FBA as a function of
the scattering angles and they give similar results beyond
30 eV for the incoming electron energies.

The results presented in this paper are obtained for a
geometry in which the polarization vector of the field E0

is parallel to the direction of incoming electron wavevec-
tor k0, where free-free differential cross sections are max-
imum at a particular laser intensity and incident electron
energy [7] and where the laser-assisted differential cross

section only depends on the orientation of the polarization
unit vector ε̂ν [19]. We compare our results in SBA with
those obtained in FBA and with the values obtained by
using the Kroll-Watson approximation (KWA), where the
differential cross sections for the exchange of photons are
related to the field-free differential cross section (dσ/dΩ)
through (

dσ�

dΩ

)
=
kf

k0
J2

� (R∆)

(
dσ

dΩ

)
. (26)

In the set of Figures 1–3, we present the differential cross
sections for laser-assisted elastic scattering with the net
exchange of up to two photons (� = 0,±1,±2) when the
electron is incident along the laser polarization axis at
collision energies of 5 eV, 10 eV and 20 eV. As has al-
ready been noted by several authors [16,18–20], the dress-
ing of the electron-target effects are seen to be dominant
in the forward direction. This is due to the presence in
the ‘atomic’ term in FBA of the S–P transition ampli-
tude which behaves as ∆−1 for small transfer momen-
tum ∆. Moreover, we noticed a destructive interference,
in FBA, between the ‘electronic’ and ‘atomic’ amplitudes.
The presence of such interference is a general feature
of � = 0 −→ � = 1 transitions in the case of inverse
bremsstrahlung (� > 0). This minimum appears at an-
gles for which the first Born differential cross vanishes, i.e.
when fB1,�

elec (∆) + fB1,�
atom(∆) = 0. In contrast, for the cases

when the zero-order term of the SBA to the elastic scat-
tering amplitude is taken into account, we do not obtain
a deep minimum, because the presence of an additional
term forbids the occurrence of complete destructive inter-
ference. The inclusion of higher order terms is one typical
signature of the dressing of the electron-target system in
the differential cross section and clearly shows the effect of
internal structure of the atomic target when the energies
of the primary electron are low. These are the conditions
for which the target distortion induced by the laser field
should be taken into account more fully.

For scattering without any net exchange of photons,
the differences between the FBA and KWA results are
too small to be seen on the scale of Figures 1–3. The
earlier work provoked several theoretical investigations on
the inherent characteristics of KWA. Geltman [22] and
Rabadan [23] have both shown that neglecting the laser-
atom interaction has too small an effect under the condi-
tions of the experiments to explain the discrepancy with
the KWA. The first-Born approximation results show a
completely different behaviour for the cross sections, such
that the laser-atom interaction effects are important over
a small range of scattering conditions. That’s not the case
in SBA where the dressing is important over a wide range
of incident scattering angles for a given incident energy
smaller than 30 eV. We note that, in Figures 1, 2 and 3,
when the incident electron energy decreases, the differen-
tial cross section is larger in SBA than the first term of
the Born series, which shows that the results are sensi-
tive to the higher terms of the Born series for low inci-
dent energies. Indeed, one observes strong modifications
of the cross sections, as compared with the results of
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Fig. 1. Variation of log10(DCS) for elastic scattering with the transfer of � photons
[
(a) � = 0, (b) � = 1, (c) � = −1, (d)

� = 2 and (e) � = −2
]

as a function of scattering angle (θ). The incident electron energy is 5 eV, the laser frequency is 1.17 eV

and the electric field strength is 108 Vcm−1. Solid lines: second-Born approximation. Dashed lines: first-Born approximation.
Dotted lines: results obtained by neglecting the dressing of the target.

calculations in first-Born approximation and KWA cross
sections, in particular at small scattering angles and for
low-energy electrons. For a given intensity of the laser
field, the minima resulting from the condition R∆ = 0
move to larger scattering angles as the collision energy
increases (the argument of the Bessel function becomes
zero if �ω = Ek0 tan2 θ). R∆ is purely kinematic in origin
and is not accessible below �4 eV. The position of these
minima depend of the intensity and frequency of the laser
field, and the kinematic considerations (the choice of the
scattering geometry). The absolute magnitude of the dif-

ferential cross section increases when the incident electron
energy decreases and/or |�| increases. The situation is dif-
ferent at R∆ = 0.

The differences between the SBA and KWA are much
larger than the differences between the FBA and KWA.
Indeed, between FBA and KWA they are almost equal
zero. Hence, for low incident energies, the FBA can’t show
clearly the effect of the laser on the internal structure of
the atom in the case where there is no net exchange of
photons (� = 0). Therefore, for low incident energies, the
higher order Born-Series are required to display such an
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Fig. 2. As in Figure 1, but with an incident electron energy of 10 eV.

effect and thus to interpret correctly the scattering Differ-
ential Cross Sections.

The SBA results are generally larger than the corre-
sponding FBA Differential Cross Sections for the different
incoming electron energies and at any scattering angle ex-
cept when the cross section vanishes. For a given energy
and a fixed �, the difference between SBA and FBA re-
mains constant for any scattering angle. The results pre-
sented in the set of Figures 1–3 illustrate the second-term
of Born series effects for incident electron energies in the
range 5 to 20 eV: these effects decrease with the incoming
electron energies.

For the net exchange of one or two photons, the dif-
ferences between the FBA and the SBA results are still
very important at small scattering angles and are other-
wise constant for a given incident energy and a fixed �.
This is due to the presence in the ‘atomic’ term in FBA
of S–P transition amplitudes which behave as ∆−1 for a
small transfer momentum ∆. Moreover, we notice a de-
structive interference, in FBA, between the ‘electronic’
and ‘atomic’ amplitudes. The presence of such interfer-
ence is a general feature of 1s→ ns transitions in the case
of inverse bremsstrahlung (� > 0). This minimum also
appears at angles for which the first Born cross section
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Fig. 3. As in Figure 1, but with an incident electron energy of 20 eV.

vanishes, i.e. when fB1,�
elec (∆) + fB1,�

atom(∆) = 0. In contrast,
for the cases when the zero-order term of the SBA to the
elastic scattering is taken into account, we do not obtain
a deep minimum, because the presence of an additional
term forbids the occurrence of a complete destructive in-
terference. This interference appears clearly at 5 eV. There
also appears to be some differences between the differen-
tial cross sections due to absorption and also due to emis-
sion, in particular, in the forward direction. This difference
comes from the presence of a kind of minimum resulting
from the condition R∆ = 0 (the argument of the Bessel
function becomes zero if �ω = E0 tan2 θ in the absorption
case. This condition cannot be fulfilled in the emission
case. We notice that, in Figures 1, 2 and 3, when the inci-

dent electron energy decreases, the differential cross sec-
tion is larger in SBA than the first term of the Born series
for any angles except at angles such that the argument
R∆ = 0 of the Bessel functions actually vanishes. We no-
tice that this zero exists only in the case when E0 parallel
to k0 and the localization in θ is given by the equation
k0 − kf cos θ = 0, where θ is the scattering angle. For the
other geometries, this condition cannot be fulfilled. This
behaviour shows that the results are sensitive to the higher
order terms of the Born series. We show for comparison, in
Figures 1, 2 and 3, the second Born differential cross sec-
tion, which does not have the oscillating structure present
in the small-energy region relative to the incident electron.
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